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Abstract

This article reviews the method of separation of variables and some of
the basic results of quantum theory in order to derive the energy levels of
a hydrogen atom, explaining the cause for the observed spectrum of the
hydrogen atom.

The hydrogen atom is modelled in spherical polar coordinates as an
electron orbiting a proton due to an electric Coulomb potential. The time
independent Schrödinger equation for hydrogen, a three variable partial
differential equation, is then solved using the method of separation of
variables to find the radial, azimuthal and polar normalised functions;
and these are recombined to find the total wavefunction describing the
quantum states of the hydrogen atom.

During the process it is found that the states of a hydrogen atom are
described by three integer quantum numbers — l, m and n — and that
the energy levels of the hydrogen atom — En — are only dependant on
n. It is explained that the result of an electron moving from an energy
level Ep in an excited hydrogen atom to a lower energy level Eq results in
the release of a photon with energy E = Ep −Eq, and this fact is used to
derive the possible frequencies of light given off by an excited hydrogen
atom — the spectrum of hydrogen.
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1 Introduction

Newton introduced his Laws of Motion in the 18th century, which at the time
appeared to explain all visable motions (those of apples, planets, stars. . . ).
However, with more and more powerful telescopes, astronomers began to notice
that something was amiss. Around the beginning of the 20th century, Einstein
introduced his controversial theories of relativity. This theory gave more accu-
rate predictions for the motions of extremely massive objects, whilst remaining
accurate for smaller masses.

However, Einstein’s theory of relativity, was not perfect: it did not explain
motion on the atomic scale. At the beginning of the 20th century, many scien-
tists including the likes of Bohr, Born, de Broglie, Compton, Dirac, Einstein,
Heisenberg, von Neumann, Pauli, Planck, Schrödinger and Weyl helped work on
the theory of Quantum Mechanics, which helps explain the motion and mechan-
ics of very small entities, allowing for the discrete nature of energy. Quantum
mechanics has become the predominant theory for atomic and sub-atomic mo-
tion, due to how well it explains many observed phenomena which cannot be
explained with classical mechanics.

Currently, one of the biggest problems in physics is trying to reconcile quan-
tum mechanics with relativity, in order to form a Grand Unified Theorem
(GUT), also known as a Theory of Everything.

1.1 Aim of this Article

This article intends to outline some of the very basic features of quantum me-
chanics, and apply them to the problem of the hydrogen atom, in order to derive
the energy levels inherent therein, and apply this information to the problem of
atomic spectra.

The article will also recap the method of separation of variables in order to
solve a three variable partial differential equation, expressed in spherical polar
coordinates.

1.2 Approach

We will quote the Schrödinger equation and the Coulomb potential for an elec-
tron orbiting a proton. We will then separate out the Schrödinger equation’s
time dependence (as the Coulomb potential is static for a stationary proton),
and thus we will deduce the time-independent Schrödinger equation (TISE) for
the hydrogen atom.

Using the mathematical method of separation of variables, we will solve
the TISE for the hydrogen atom. We will also derive the energy levels of the
hydrogen atom, and use these levels to explain the observed spectra of the
hydrogen atom.
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1.3 Main Conclusions

We will find that the predicted energy levels of the hydrogen atom agree with
the observed data, and find that the energy levels of the hydrogen atom depend
solely on the principal quantum number, n.

1.4 Overview

The article starts with an introduction to quantum mechanics, giving a little
background on a few of the main contributors to the theory. We go on to
explain what wavefunctions are, and define the Schrödinger equation, which we
then simplify for hydrogen into a time-independent form.

In order to solve this equation, we review the method of separation of vari-
ables, using the time-independent Schrödinger equation for hydrogen as an ex-
ample.

After separating this partial differential equation into three separate ordinary
differential equations, we solve and normalise them, and then amalgamate them
into the final wavefunction for hydrogen.

We then study one of the results of the previous derivation, an equation
relating the energy of the system, E, to the principal quantum number, n, an
integer. We use this to deduce that the energy levels of the hydrogen atom are
discrete, and we use this to explain the emission spectra of the hydrogen atom.

Finally, there is a discussion of the article, followed by a brief conclusion.
We also cover the Legendre equation and the associated Legendre equation and
their solutions, in order to supplement the article’s main derivation.

A brief glossary can be found at the end of the article explaining many of
the terms found in italics.

2 Introduction to Quantum Mechanics and the
Schrödinger Equation

In classical mechanics, electro-magnetic energy (that from radiation of visible
light, x-rays, radiowaves, ...) is seen as being continuous. However, early in
the 19th century, Max Planck and others started to think that it was actually
discrete. Quantum mechanics was a theory introduced to try and model the
physics of these discrete energy “quanta”, which are called “photons” in the
case of electro-magnetic radiation (EM-radiation). Quantum mechanics deals
with very small scale problems: those of an atomic or sub-atomic nature.

2.1 The Founders of Quantum Mechanics

There were many people involved in the initial theorisation of quantum mechan-
ics. Here are just a few of the contributers, and an example of their contribu-
tions:

• Niels Bohr developed the model of the atom now called the Bohr atom.

• Max Born introduced the current interpretation of the squared amplitude
of the wavefunction ψ∗ψ in the Schrödinger equation: a probability density
function.
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• Louis de Broglie introduced the de Broglie wavelength: the theory that
matter has wavelike properties, with a wavelength proportional to its mo-
mentum.

• Arthur Compton discovered the phenomena now known as Compton
scattering, and wrote the paper A Quantum Theory of the Scattering of
X-Rays by Light Elements.

• Paul Dirac did a lot of work in quantum mechanics and relativity, and
proposed an equation of motion for an electron, taking into consideration
relativistic effects.

• Albert Einstein did a lot of work in order to explain the photoelectric
effect, but did not like the path the new quantum mechanics was following,
famously saying in a letter to Max Born in 1926 that he was “convinced
that He [the Old One, God] does not throw dice.”

• Werner Heisenberg is well known for the Heisenberg uncertainty prin-
ciple: that an object’s position and momentum cannot both be known
accurately simultaneously. He also introduced the matrix mechanical for-
mulation of quantum mechanics.

• John von Neumann introduced the idea of linear operators for quantum
mechanics whilst he was giving the theory rigour by assigning it axioms.

• Wolfgang Pauli is known for the Pauli exclusion principle: that two
fermions (for example, electrons) cannot occupy the same quantum state
at the same time. He also used quantum mechanics to predict the existence
of neutrinos.

• Max Planck, whilst studying black-body radiation, theorised that electro-
magnetic radiation could only be released in small “packets” with energy
given by E = hf , where f is the frequency of the radiation, and h is
Planck’s constant.

• Erwin Schrödinger was responsible for the wave mechanical formula-
tion, and introduced the famous Schrödinger equation, which describes
how a wavefunction evolves with time.

• Hermann Weyl introduced the theory of compact groups, which is used
to understand the symmetry inherent in the theory of quantum mechanics.
(Dirac, 1958)

2.2 Wavefunctions

In Schrödinger’s interpretation of quantum mechanics, a system is described by
a wavefunction, ψ, which contains “all the information we have about the state
of a physical system” (Schrödinger and Bitbol, 1995, page 70). A wavefunction
is given by the superposition of the eigenstates for an operator of the system
(see section 2.2.4). ψ itself is not physically important, instead ψ∗ψ (where
ψ∗ is the complex conjugate of ψ) is the physically important quantity: it is a
probability density function, detailing the probability of finding the system in
a particular state.
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2.2.1 Heisenberg’s Uncertainty Principle

Heisenberg theorised that it is not possible to know the exact location of a
particle and know its exact momentum at the same time, as measurement of
one will change the other. This theory is known as Heisenberg’s uncertainty
principle.

For example, using light to measure the position of a small particle will
let us know where it was at a certain time to an accuracy in the order of the
wavelength of the light. In order to make the measurement more precise, we
use light with a smaller wavelength λ which thus has a higher frequency f by
the relation c = fλ, where c is the speed of light. The energy of a photon is
given by E = hf where h is Planck’s constant, so the more precisely we measure
the position of the particle, the more energy the photon has. Photons with this
energy which collide with the particle (they make the shadow which we observe,
and use to locate the particle), will give the particle their energy, adjusting the
particles momentum unpredictably.

This principle is reflected very accurately in the methods of determining
position and momentum inherent in quantum mechanics.

2.2.2 Normalisation

For a system of one particle, described by the quantum wavefunction ψ(x, t),
the probability of finding a particle at position x at time t is given by P (x, t) =
ψ∗(x, t)ψ(x, t) and is infinitesimal (by Heisenberg’s uncertainty principle). Work-
ing now in 1 dimension for clarity, the probability of finding the particle in a
range x0 < x < x1 at time t is given by∫ x1

x0

P (x, t) dx =
∫ x1

x0

ψ∗(x, t)ψ(x, t) dx

Now, the probability of finding the particle somewhere has to be 1: the
particle has to have a position! Thus we require that:∫ ∞

−∞
P (x, t) dx =

∫ ∞

−∞
ψ∗(x, t)ψ(x, t) dx = 1 (2.1)

A wavefunction that satisfies this requirement is said to be normalised. The
process of turning a prototype wavefunction into a normalised wavefunction is
known as normalisation. All wavefunctions must be normalisable. Note that in
order to be normalisable, a wavefunction must be continuous.

2.2.3 Wavefunctions Are Single Valued

It does not make sense for a particle described by ψ(x, t) to have two or more
different probabilities of being found at a specified place x0 at time t0, and for
this reason we say that wavefunctions must be single valued.

2.2.4 Eigenstates and Eigenvalues

In order to introduce some more vocabulary, we will consider a rather cruel
example, very similar to Schrödinger’s cat. We place a cat in a box. Inside the
box, there is a sealed poison container, and a radioactive atom, which acts as
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a random trigger of the poison release. When the atom decays, the poison is
released into the box killing the cat. Before the atom decays, the cat is alive.
The box is totally sealed, and there is no way of knowing whether the cat inside
the box is alive or dead.

One operator for this system could be called L̂ for Look, where we open
the box five minutes after the cat was placed in it, and see whether the cat is
alive or dead. This operator has (assuming instant death from the release of
the poison) two possible eigenstates: one describing an alive cat, uA, and one
describing a dead cat, uD. These eigenstates have associated eigenvalues: alive
(A) and dead (D) respectively.

In quantum mechanical terms, the system is described by the total wave-
function, ψ, which is a superposition of the eigenstates of one of the operators of
the system, with adjusted amplitudes, cA and cD, where cA2 is the probability
of finding the cat alive, and cD2 is the probability of finding the cat dead. Then
the equation for the total wavefunction is

ψ = cAuA + cDuD

Were we now to perform the operation L̂, on the system, we would find out
if the cat was alive or dead, and the wavefunction describing the system would
collapse into the associated eigenfunction. Performing this operation would look
like this:

L̂ψ = Lψ

where L takes the value of either A for alive, or D for dead. Let us assume that
performing the operator found that the cat was alive. Then, we know that L
has the value A, and ψ has collapsed into the alive eigenstate: ψ = uA. Were
we to perform this operator again on ψ, we would still find the cat to be alive,
as “alive” is the only outcome for the collapsed wavefunction: it is the only
eigenstate.

2.3 Schrödinger Equation

The Schrödinger equation governs how a wavefunction evolves with time. The
Schrödinger equation for a particle of mass m in a potential V described by a
wavefunction ψ is:

− ~2

2m
∇2ψ + V ψ = i~

∂ψ

∂t
(2.2)

where ∇2 is the Laplacian operator and i =
√
−1. As was commented before,

ψ∗ψ is physically significant, whilst ψ itself is not. This can be seen by looking
at the equation above: ψ is a complex number, but by the definition of the
complex conjugate, ψ∗ψ is a real number, and we expect things we observe to
be real.

2.4 Time Independent Schrödinger Equation (TISE)

For systems which have a static potential V (r, t) = V (r), we can write the
much simpler time-independent Schrödinger equation (TISE ) by employing the
method of separation of variables (for a more detailed description of separa-
tion of variables, please see section 3). Let us assume that ψ has the form:
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ψ(r, t) = u(r)f(t), then substitution into equation (2.2) and division by ψ gives
the separated Schrödinger equation:

1
u(r)

(
− ~2

2m
∇2u(r) + V u(r)

)
= E =

1
f(t)

(
i~
∂f(t)
∂t

)
(2.3)

where E is the separation constant.
Studying just the right hand side of the separated Schrödinger equation

(2.3), we see that:

d

dt
f(t) + i

E

~
f(t) = 0 ⇒ f(t) = A exp

(
− iEt

~

)
(2.4)

Studying the left hand side of the separated Schrödinger equation (2.3), we
find the TISE (as displayed in Davies and Betts, 1994, equation (2.2)):

− ~2

2m
∇2u(r) + V (r)u(r) = Eu(r) (2.5)

So, the dependence of ψ on t when V is static is lost when we find the
probability distribution, because:

ψ∗ψ =
[
u(r) exp

(
− iEt

~

)]∗ [
u(r) exp

(
− iEt

~

)]
= [u(r)]2

[
exp

(
iEt

~
− iEt

~

)]
= [u(r)]2

which is independent of t.

2.5 TISE in Spherical Polar Coordinates

We can substitute the spherical polar definition of the Laplacian operator ∇2

(Bethe and Salpeter, 1977, equation (1.2)):

∇2 =
1
r2

∂

∂r

(
r2
∂

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
r2 sin2 θ

∂2

∂φ2
(2.6)

in to the TISE (2.5), to give us (after re-arranging) the TISE in spherical polar
coordinates r = (r, θ, φ) (Osborn, 1988, equation (1.38)):

− ~2

2m
1

r2 sin θ

[
sin θ

∂

∂r

(
r2
∂u

∂r

)
+

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1
sin θ

∂2u

∂φ2

]
+ V u = Eu

(2.7)
where u = u(r, θ, φ) and V = V (r, θ, φ). Note that the following limits are
placed on spherical polars coordinates:

0 ≤ r
0 ≤ θ < π
0 ≤ φ < 2π

(2.8)
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Figure 1: Simplified model of the hydrogen atom, showing a proton at the
centre (r = 0), with an electron orbiting it, currently located at spherical polar

coordinates (r, θ, φ) (illustration copyright c©Benjamin Gillam, 2007).

2.6 Schrödinger Equation for the Hydrogen Atom

In order to solve the Schrödinger equation for hydrogen, we must first simplify
it. We model the hydrogen atom as shown in Figure 1. We see the electron, of
mass me, orbiting the nucleus of the atom, a proton with mass mp. To simplify
the situation mathematically, we fix the position of the nucleus, by endowing it
with infinite inertia. This results in a modification of the mass of the electron
to compensate. We call this new mass the reduced mass, µ, and it is given by

µ =
memp

me +mp
(2.9)

We see the electron as orbiting the central proton at a distance r, moving
under the influence of a central potential, V (r), defined in many text books
(such as Tipler and Mosca, 2004, equation 36-26; and Bethe and Salpeter, 1977,
equation (1.1)):

V (r) = − e2

4πε0r
(2.10)

where e is the charge on the electron, and ε0 is the permittivity of free space (a
constant attained from observational evidence).

We can now substitute these two facts into the TISE (2.5), to give the TISE
for hydrogen:

− ~2

2µ
∇2u− e2

4πε0r
u = Eu (2.11)

We can write this using spherical polar coordinates, (r, θ, φ), so that the r in
the TISE for hydrogen (2.11) is one of the coordinates, by using the definition
of the Laplacian operator ∇2 in spherical polar coordinates (2.6):
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− ~2

2µ
1

r2 sin θ

[
sin θ

∂

∂r

(
r2
∂u(r, θ, φ)

∂r

)
+

∂

∂θ

(
sin θ

∂u(r, θ, φ)
∂θ

)
+

1
sin θ

∂2u(r, θ, φ)
∂φ2

]
−

e2

4πε0r
u(r, θ, φ) = Eu(r, θ, φ)

(2.12)

Note that the potential energy of the electron must vanish as r →∞, as at
∞ the proton should have no physical effect on the electron whatsoever.

We now use separation of variables to solve the problem.

3 Separation of Variables

It is sometimes possible to simplify partial differential equations into ordinary
differential equations. One method which follows this route is called separation
of variables, and it tries to reduce a partial differential equation of n variables
into a collection of n ordinary differential equations. It then restricts the form
of the solution into separate factors, each dependent on just one variable, which
are all multiplied together.

3.1 Explanation

As just noted, the basic idea behind separation of variables is that, for an target
function of n variables, we assume that it takes the form of the product of n
single variable functions (one for each variable in the original function). For
example, for the wavefunction discussed in section 2.5, we would look for a
solution of the form

u(r, θ, φ) = R(r)Θ(θ)Φ(φ) (3.1)

We would then substitute this solution form into the partial differential
equation, and attempt to separate it so that one side is dependant on one
variable only, and the other side is independent of that same variable. Then,
we would know that both sides must be equal to a constant, generally called
the separation constant (Street, 1973), and so we can separate the equation into
two equations that are both equal to this constant. We would then repeat this
process on any of these resulting equations which are dependant on more than
one variable.
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3.2 An Example: The Schrödinger Equation for Hydrogen

We substitute the assumed form of u (3.1) into our partial differential equation,
the TISE for hydrogen (2.12), to give:

− ~2

2µ
1

r2 sin θ

[
sin θ

∂

∂r

(
r2
∂

∂r
{R(r)Θ(θ)Φ(φ)}

)
+

∂

∂θ

(
sin θ

∂

∂θ
{R(r)Θ(θ)Φ(φ)}

)
+

1
sin θ

∂2

∂φ2
{R(r)Θ(θ)Φ(φ)}

]
−

e2

4πε0r
R(r)Θ(θ)Φ(φ) = ER(r)Θ(θ)Φ(φ)

(3.2)

The next step is to perform the derivatives, and to divide by the product
R(r)Θ(θ)Φ(φ). I will omit the dependence of the variables now for brevity.
After a little rearranging, we can write the result as the separated TISE for
hydrogen:

µe2r

2πε0
+

~2

R

d

dr

(
r2
dR

dr

)
+ 2µEr2 = ~2λ =

− ~2

[
1

Θ sin θ
d

dθ

(
sin θ

dΘ
dθ

)
+

1
Φ sin2 θ

d2Φ
dφ2

]
(3.3)

Notice that the left hand side of equation (3.3) only depends on r, and the right
hand side is independent of r. As r can vary, this means that each side of the
equation must equal a constant (the separation constant), labelled λ in equation
(3.3) above.

By rearranging the right hand side of the separated TISE for hydrogen (3.3),
we get a separated equation for θ and φ:

sin θ
Θ

d

dθ

(
sin θ

dΘ
dθ

)
+
λ sin2 θ

~2
= b2 = − 1

Φ
d2Φ
dφ2

(3.4)

Applying the same logic again, we notice that the left hand side of the
separated equation for θ and φ (3.4) depends only on θ, whilst the right hand
side depends only on φ. So, both sides must be equal to another separation
constant, which has been labelled b2 (note that at this point b can, in general,
be a complex number).

Studying just the right hand side of the separated equation for θ and φ (3.4),
we find the ordinary differential equation for Θ:

d2Φ
dφ2

+ b2Φ = 0 (3.5)

From the left hand side of the separated equation for θ and φ (3.4), we find
the differential equation for Φ:

sin θ
Θ

d

dθ

(
sin θ

dΘ
dθ

)
+
λ sin2 θ

~2
= b2 (3.6)
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Finally, we recall the left hand side of the separated TISE for hydrogen (3.3),
extracting the differential equation for R:

µe2r

2πε0
+

~2

R

d

dr

(
r2
dR

dr

)
+ 2µEr2 = ~2λ (3.7)

So, you can see that the TISE for hydrogen (3.2), a partial differential equa-
tion in three variables, has been reduced to three ordinary differential equations,
each of just one variable. We must now solve these.

4 Solving the TISE for the Hydrogen Atom

Now that we have reduced the TISE for hydrogen into three ordinary differential
equations, we must solve them.

4.1 Solution for Φ

The differential equation for Φ (3.5) has the following standard solutions:

Φ = Aeibφ (4.1)
Φ = Be−ibφ (4.2)

By the symmetry of our model, we realise that these two solutions for Φ
just involve the atom moving in opposite directions about the proton. We thus
arbitrarily choose to only use the first solution (4.1).

From the section 2.2.3, we know that the wave function must be single valued
at every point. As φ = φ0 and φ = φ0 + 2π represent the same physical point
for arbitrary φ0, we must have that Φ(φ) = Φ(φ+ 2π) for all φ:

Aeibφ = Aeib(φ+2π)

= Aeibφei2bπ

⇒ ei2bπ = 1

It follows that b must be a real integer, which we label m, the magnetic quantum
number. We now normalise Φ (see section 2.2.2), in order to find the value of
the constant A (remembering that the complex conjugate of eimφ is e−imφ):∫ 2π

0

(
Aeimφ

)∗ (
Aeimφ

)
dφ = 1

A =
1√
2π

So, substituting this value of A into the standard solution for Φ (4.1), we
find that the normalised solution for Φ is:

Φm(φ) =
1√
2π
eimφ (4.3)
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4.2 Solution for Θ

To solve the left hand side of the differential equation for Θ (3.4), we introduce
a substitution: let α = cos θ. Then we have the following relations:

d

dθ
=
dα

dθ

d

dα
= − sin θ

d

dα
(4.4)

sin2 θ = 1− cos2 θ = 1− α2 (4.5)

Upon substitution of the first (4.4) and then the second (4.5) of these rela-
tions into the left hand side of the differential equation for Θ (3.4), and rear-
ranging, we find:

− sin2 θ

Θ
d

dα

(
− sin2 θ

dΘ
dα

)
+ λ sin2 θ = m2 (4.6)

=⇒ d

dα

(
(1− α2)

dΘ
dα

)
+
(
λ− m2

(1− α2)

)
Θ = 0 (4.7)

Equation (4.7) is known as the associated Legendre equation. This is covered
in further detail in Appendix A. It only has solutions when:

λ = l(l + 1) l = 0, 1, 2, . . . (4.8)

where we call l the angular momentum quantum number (Bethe and Salpeter,
1977, equation (1.6)) with normalised solutions:

Θlm(θ) =

√
(l −m)!
(l +m)!

2l + 1
2

Pm
l (cos θ) (4.9)

(Bethe and Salpeter, 1977, equation (1.7); Geremia, 2006, equation (42); Davies
and Betts, 1994, equation 7.23) where Pm

l (cos θ) are the associated Legendre
solutions written in terms of cos θ as defined in appendix A in equations (A.11)
and (A.12). m is an integer in the range −l, ..., l (see appendix section A.2 for
more details). Thus for every value of l, there are 2l+1 choices for m, and thus
2l + 1 solutions.

4.3 Solution for R

Recalling the differential equation for R (3.7) (and substituting λ = l(l + 1)),
we have that:

µe2r

2πε0
+

~2

R

d

dr

(
r2
dR

dr

)
+ 2µEr2 = ~2l(l + 1) (4.10)

This can be written as the following ordinary differential equation:

d2R

dr2
+

2
r

dR

dr
+
[
2µE
~2

+
µe2

2πε0~2r
− l(l + 1)

r2

]
R = 0 (4.11)

For the electron to be orbiting the proton, it must never reach r = ∞.
We can impose this condition by giving the particle negative kinetic energy at
infinity, and we know that at infinity the potential energy is zero, and thus
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the particle must have negative total energy, E. We first study this ordinary
differential equation (4.11) under the condition r →∞:

d2R

dr2
+

2µE
~2

R = 0 (4.12)

This has the standard solutions:

R(r) = exp
(√

−2µE
~

r

)
= eβr (4.13)

R(r) = exp
(
−
√
−2µE

~
r

)
= e−βr (4.14)

where β =
√
−2µE

~ is a constant. We must choose the second solution (4.14), as
the first solution (4.13) diverges as r →∞, which does not allow normalisation.

In order to expand the second solution (4.14) to work for finite r, we multiply
it by a polynomial in r (Dirac, 1958, equation (74), page 157; Davies and Betts,
1994, page 42), which I shall denote F (r). Thus we try the solution R(r) =
F (r)e−βr. We substitute this into the ordinary differential equation (4.11) to
get (after rearranging) the following constraint on F :

d2F

dr2
+
(

2
r
− 2β

)
dF

dr
−
(

2β
r

+
β2e2

4πε0Er
+
l(l + 1)
r2

)
F = 0 (4.15)

On normalisation grounds, we know that F (r) must have a highest order
term, so we let k be the order of this term. We now insert just this term, into
the constrain on F (4.15):

k(k − 1)rk−2 +
(

2
r
− 2β

)
krk−1 −

(
2β
r

+
β2e2

4πε0Er
+
l(l + 1)
r2

)
rk = 0 (4.16)

(k(k + 1)− l(l + 1)) rk−2 −
(

2βk + 2β +
β2e2

4πε0E

)
rk−1 = 0 (4.17)

The lead term is −(2βk+ 2β + β2e2

4πε0E )rk−1, which cannot be cancelled with
any lower order terms from the polynomial (because they would have a lower
order of r). For this reason, we require that the coefficient vanishes:

−
(

2βk + 2β +
β2e2

4πε0E

)
= 0 (4.18)

or, by rearranging:

k + 1 = − βe2

8πε0E
= − e2

8πε0~

√
−2µ
E

= n (4.19)

where we have introduced n = k + 1.
By its definition, we know that k is an integer, and thus k + 1 is an integer

also, so by the previous equation (4.19), n must also be an integer. We call this
value n the principal quantum number. Also, note that k = n−1, so the highest
order term in the polynomial F (r) is rn−1.
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Similarly, let g be the order of the lowest order term in the polynomial F (r).
Inserting this term into the constraint on F (4.15), we get:

(g(g + 1)− l(l + 1)) rg−2 −
(

2βg + 2β +
β2e2

4πε0E

)
rg−1 = 0 (4.20)

We are interested in the lowest order term, rg−2, as it cannot be cancelled
with any higher order terms from the polynomial. Thus, we have that its coef-
ficient, (g(g + 1)− l(l + 1)), must be equal to 0. From this we deduce:

g(g + 1) = l(l + 1) =⇒
{

either: g = l
or: g = −(l + 1) (4.21)

If we were to let g = −(l + 1), then there would be negative powers of r,
meaning that as r → 0, P (r) → ∞. This cannot be true, as the wavefunction
needs to be normalisable; we must therefore have that g = l, and thus the lowest
term in the polynomial P (r) is rl. We also know that 0 ≤ l ≤ n− 1.

We can now write the equation for Fl,n(r):

Fl,n(r) =
n−1∑
s=l

al,n,sr
s (4.22)

where al,n,s are constants. The functions F (r) are known as “associated La-
guerre polynomials” (Davies and Betts, 1994, page 111).

The equation for Rl,n(r) is:

Rl,n(r) =

(
n−1∑
s=l

al,n,sr
s

)
exp

(
−
√
−2µEn

~
r

)
(4.23)

(note that, as En is negative, the parameter of the exponential function is a
real, negative value).

If we substitute n = 1 into the equation for Fl,n(r) (4.22), we get that l = 0
(as n− 1 = 0) and thus m = 0; and also that F (r) = a1,0,0. We require Rl,n(r)
to be normalised, giving a value for a1,0,0:

1 =
∫ ∞

0

(Rl,n(r)∗Rl,n(r)) dr

= a1,0,0
2

∫ ∞

0

(
e−2βnr

)
dr

= a1,0,0
2

[
1

−2βn
e−2βnr

]∞
0

=
a1,0,0

2~
2
√
−2µEn

a1,0,0 = 4

√
−8µEn

~2

Substituting n = 2 into the equation for Fl,n(r) (4.22), tells us that F (r) =
a2,l,0 + a2,l,1r, and that l = 0 (which implies m = 0), or l = 1 (which implies
m = −1, 0, 1). We would use the same method as above to get an expression for
the normalisation constants a2,l,0 and a2,l,1; and for the normalisation constants
for other values of n and l.
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4.4 The Final Wavefunction

Now we can substitute the normalised solutions for Rl,n(r) (4.23), Θl,m(θ) (4.9)
and Φm(φ) (4.3) into the assumed form of Ψl,m,n(r, θ, φ) (3.1) to give the nor-
malised solution:

Ψl,m,n(r, θ, φ) =√
(l −m)!
(l +m)!

2l + 1
4π

(
n−1∑
s=l

an,l,sr
s

)
exp

(
−
√
−2µE

~
r

)
Pm

l (cos θ)eimφ (4.24)

The first few normalised solutions of which are given by:

Φ1,0,0 =
1√
πa0

3
exp

(
− r

a0

)
Φ2,0,0 =

1√
8πa0

3

(
1− r

2a0

)
exp

(
− r

2a0

)
Φ2,1,0 =

1√
8πa0

3

(
r

2a0

)
cos θ exp

(
− r

a0

)
Φ2,1,±1 =

1√
πa0

3

(
r

8a0

)
sin θ exp(±iφ) exp

(
− r

a0

)
Φ3,0,0 =

1√
27πa0

3

(
1− 2r

3a0
+

2r2

27a0
2

)
exp

(
− r

3a0

)
Φ3,1,0 =

2
27

√
2

πa0
3

(
r

a0

)(
1− r

6a0

)
cos θ exp

(
− r

3a0

)
(Davies and Betts, 1994, Table 8.1). where

a0 =
4πε0~2

µe2
(4.25)

is a constant called the “Bohr radius” (Davies and Betts, 1994, page 43).
Note that the time dependence can be added to these equations simply by

multiplying them by

exp
(
− iEt

~

)
as previously calculated in equation (2.4).

5 Energy Levels in the Hydrogen Atom

Rearranging the equation relating n to E (4.19), we find:

En = − 1
n2

µ

32

(
e2

πε0~

)2

=
1
n2
E1 (5.1)

where the first energy level, E1, is given by:

E1 = − µ

32

(
e2

πε0~

)2
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which implies that the energy levels for hydrogen (the feasible values of En, the
total energy) are discrete.

Using the fundamental physical constants from Mohr and Taylor (2002), we
can calculate E1. I will use the following constants:

me = 9.1093826× 10−31 kg

mp = 1.67262171× 10−27 kg

e = 1.60217653× 10−19 C

ε0 = 8.854187817x10−12 F m−1

π = 3.14159265
~ = 1.05457148× 10−34 m2 kg s−1

to give a value of E1 = −2.1786864 × 10−18 J = −13.598292 eV (where eV
stands for electron-volts). So the energy levels of the hydrogen atom, according
to quantum mechanics, are given by the following formula:

En = −13.598292
n2

eV (5.2)

A few things worth noting about this formula:

1. As discussed previously (in section 4.3) the total energy of the system,
En, is negative.

2. The lowest energy level, E1 ≈ −13.6 eV , is known as the ionisation energy
of hydrogen. This value has been confirmed by experimental evidence
(such as the limit of the Lyman series) (Davies and Betts, 1994, page 43;
Dirac, 1958, page 158; Bethe and Salpeter, 1977, page 9).

3. There are an infinite number of energy levels, with E∞ = 0

4. As n→∞, (En −En−1) → 0, i.e. the energy levels get closer together as
n increases.

5. Hydrogen is special, in that its energy levels do not depend on any other
quantum numbers, such as l and m. This is related to the fact that there is
just 1 proton and 1 electron: they have equal and opposite charges, with
no other charges interferring.

The first 20 of these energy levels are shown in Table 1.

5.1 Absorption and Emission Spectra

When a photon hits a hydrogen atom, if it has the right amount of energy,
then it may be absorbed by an electron, and excite it to a higher energy level.
When the electron returns from a higher energy state, n1, to a lower energy
state, n2, the change in energy, E, is released in the form of a photon. A
photon of this energy may be absorbed by an electron in energy level n2 of
another hydrogen atom, exciting the electron to energy level n1. Photons have
well defined frequency, f , proportional to their energy, E, defined by Planck’s
relation:

E = hf =
hc

λ
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n En in eV n En in eV
1 -13.598291697575 11 -0.112382576013
2 -3.399572924394 12 -0.094432581233
3 -1.510921299731 13 -0.080463264483
4 -0.849893231098 14 -0.069379039273
5 -0.543931667903 15 -0.060436851989
6 -0.377730324933 16 -0.053118326944
7 -0.277516157093 17 -0.047052912448
8 -0.212473307775 18 -0.041970036104
9 -0.167880144415 19 -0.037668398054

10 -0.135982916976 20 -0.033995729244

Table 1: The first 20 energy levels of the hydrogen atom, in electron-volts,
calculated using the values of the fundamental constants from section 5.

Figure 2: Diagram showing the wavelengths of light emitted from electrons
moving from energy states with n > 2 to the n = 2 energy state in a hydrogen
atom (an emission spectrum). The left of the diagram is the limit of the series
as n → ∞ (λ ≈ 365 nm), the right of the diagram is the emission from an
electron moving from n = 3 to n = 2 (λ ≈ 657 nm). The colours of the
diagram reflect the fact that most of the wavelengths are visible light. The
wavelengths of these lines can be looked up in the n = 2 column of Table 2.

This diagram is copyright c©Benjamin Gillam, 2007.

(where h is Planck’s constant, c is the speed of light, and λ is the wavelength of
the photon).

If a photon of energy E = 2.54968 eV is released from a hydrogen atom
(such as the green line in Figure 2 with wavelength λ ≈ 486 nm), we would
know that the electron which produced it dropped from level n1 = 4 with E4 =
−0.84989 eV to level n2 = 2 with E2 = −3.39957 eV . Similarly a photon caused
by an electron in a hydrogen atom dropping from state n1 = 2 to state n2 = 1
would have an energy given by E = E2 − E1 = (−3.39957) − (−13.59829) =
10.19872 eV .

For the case of absorption, we could shine a wide range of wavelengths
of electro-magnetic radiation through a cloud of hydrogen, and some of these
wavelengths might not make it through, as they may have been absorbed by
electrons in the hydrogen. The absorption and emission frequencies are the
same, and these energies can be measured extremely accurately. This gives
each element a unique fingerprint in the form of emission and absorption spectra,
which can be thought of as the complete set of wavelengths (and thus energies)
that photons given off by and absorbed by that atom may have.

By calculating the energy difference between pairs of quantum states in
atoms, we can calculate and catalogue the list of possible wavelengths (and thus
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frequencies) of electro-magnetic radiation that each atom may emit/absorb. The
beginnings of one such table, displaying some of the possible wavelengths of
light that may be emitted by a hydrogen atom, is shown in Table 2. We can
then monitor the wavelengths of photons emitted from an object, and use our
catalogue to deduce the object’s atomic composition.

n N = 1 N = 2 N = 3 N = 4
2 79.54 — — —
3 74.75 656.92 — —
4 70.50 486.61 1876.92 —
5 66.71 434.47 1283.05 4055.08
6 63.31 410.58 1094.87 2627.69
7 60.23 397.40 1005.91 2167.63
8 57.44 389.29 955.53 1946.44
9 54.90 383.92 923.80 1819.17

10 52.58 380.16 902.37 1737.89
...

...
...

...
...

∞ 91.24 364.96 821.15 1459.83

Table 2: Table showing a sample of the wavelengths (in nm) of light emitted
from a hydrogen atom when an electron moves from an energy level En with

n > N to energy level EN .

For example, sodium lamps (such as many street lamps in the UK) give
out a characteristic orange-yellow glow, which actually comprises a relatively
small number of discrete wavelengths. By looking up these wavelengths in our
catalogue, we would see that they correspond to the differences between some
of the energy levels in a sodium atom.

If we were to use a device to monitor the energies of photons being emitted
from the sun, we would see many spectral lines which correspond to the energy
levels in hydrogen and helium atoms. There would also be traces of spectral lines
corresponding to heavier atoms: “hydrogen comprises about 94% of the atoms
in the solar atmosphere [. . . ] Helium is the next most abundant [. . . ] All the
other elements are present only in trace amounts.” (Celarier and Hollandsworth,
2004, section 3.2)

6 Discussion

In this article, we have discussed some of the basic formulae and ideas of quantum
mechanics, and have gone on to form the Schrödinger equation for the hydrogen
atom. We found that the hydrogen atom’s energy levels are dependant solely on
the principal quantum number n (they are independent of l and m), in a form
that En ∝ −n−2:

En = − 1
n2

µ

32

(
e2

πε0~

)2

= −13.598292
n2

eV

We have found that the lowest energy level, E1 ≈ −13.6 eV , corresponds
with the observational evidence for the ionisation energy of hydrogen. We then



A Associated Legendre Equation 20

went on to discuss how an electron moving from a higher energy level to a lower
one releases the difference in energy as a photon, and how a photon may be
absorbed by an electron to raise the electron from a lower energy level to a
higher one. We discussed monitoring the frequency of photons received from
a source to find their energy, and thus the energy difference through which an
electron has moved; and finally how this can be used to identify the source atom.

This article is only meant as an introduction to the subject. It does not
cover isotopes of hydrogen, such as Deuterium, nor does it cover larger atoms.
It also does not allow for relativistic effects. The quantum mechanics of larger
atoms gets quite complicated, as we would have to allow for many different
charges orbiting the centre, and have to consider their interactions. If you want
to learn more on the subject of quantum mechanics of atoms, you could start
with the book Quantum Mechanics of One- and Two-Electron Atoms by Bethe
and Salpeter, 1977 (see references).

6.1 Conclusion

We conclude that the method of separation of variables can be applied success-
fully to the Schrödinger equation, a physical partial differential equation of three
variables, and have used this to derive that the energy levels of the hydrogen
atom are given by

En = −13.598292
n2

eV

We also note that electrons moving between different energy levels absorb
or emit photons of well defined frequencies, allowing us to fingerprint the source
atom if we know all the differences between energy levels for all atoms. This
method is important as it can be used to deduce the atomic composition of even
the most distant (visible) stars.

A Associated Legendre Equation

We will now look at solving the associated Legendre equation. The results of
this section are used in section 4.2. For convenience, we repeat the associated
Legendre equation (4.7) here:

d

dα

(
(1− α2)

dΘ
dα

)
+
(
λ− m2

(1− α2)

)
Θ = 0 (A.1)

In order to solve this equation, I will be following a method based on those
followed by Geremia (2006, section 28.1) and Davies and Betts (1994, Appendix
B). I have also used information from Bethe and Salpeter (1977, pp. 344-346).

A.1 The Legendre Equation

First, we let m = 0 to give us the Legendre equation:

d

dα

(
(1− α2)

dΘ
dα

)
+ λΘ = 0 (A.2)
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We now look for a solution in the form of an infinite power series, with lowest
order term αc:

Θ(α) =
∞∑

k=0

dkα
c+k (A.3)

Substituting this power series into into the equation of the Legendre equation
(A.2), we obtain:

d

dα

( ∞∑
k=0

(c+ k)dk

(
αc+k−1 − αc+k+1

))
+ λ

∞∑
k=0

dkα
c+k = 0

∞∑
k=0

dk

(
(c+ k)(c+ k − 1)αc+k−2 − [(c+ k)(c+ k + 1)− λ]αc+k

)
= 0

By splitting this sum into two, changing the index on the first half so that
the terms have order c+ k instead of c+ k − 2, extracting the first two terms,
and recombining the sums, we obtain:

d0(c(c− 1))αc−2 + d1((c+ 1)c)αc−1+
∞∑

k=0

[
(dk+2(c+ k + 2)(c+ k + 1)− dk [(c+ k)(c+ k + 1)− λ])αc+k

]
= 0

(A.4)

For this to be true, the coefficient of each order of α must be zero. From the
lowest order term, we find:

d0(c(c− 1)) = 0 (A.5)

By our assumption that the lowest order term in Θ(α) is αc, we know that
d0 6= 0. Thus either c = 0 or c = 1.

For the coefficient of αc+k to be zero, we require that:

dk+2(c+ k + 2)(c+ k + 1) = dk [(c+ k)(c+ k + 1)− λ]

⇒ dk+2 =
[(c+ k)(c+ k + 1)− λ]
(c+ k + 2)(c+ k + 1)

dk

and so:

(for c = 0) dk+2 =
k(k + 1)− λ

(k + 2)(k + 1)
dk (A.6)

(for c = 1) dk+2 =
(k + 1)(k + 2)− λ

(k + 3)(k + 2)
dk (A.7)

From this recurrence relation, we know all of the even coefficients in the
power series (A.3) for c = 0 and all of the odd coefficients for c = 1.

If we look back at the power series (A.3), in order for it to be normalisable,
the coefficients dk must vanish at some point. So let us label the order of the
highest order term in the power series (A.3) as l − c. We thus deduce:

(for c = 0) dl+2 = 0 =
l(l + 1)− λ

(l + 2)(l + 1)
dl (A.8)

(for c = 1) dl+1 = 0 =
l(l + 1)− λ

(l + 2)(l + 1)
dl−1 (A.9)
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For this to be true, λ = l(l + 1), where l ≥ c. As the coefficients obey a
linear recurrence relation, we only have two coefficients to determine: d0 (non-
zero only for c = 0) and d1 (non-zero only for c = 1).

The solutions to the Legendre equation are called the Legendre polynomials
and they are given by:

Pl(α) =
1

2l l!
dl[(α2 − 1)l]

dαl
(A.10)

(Bethe and Salpeter, 1977, page 344).

A.2 The Associated Legendre Equation

It is very difficult to solve the associated Legendre equation directly, however
there is simple formula in terms of the Legendre polynomials for m ≥ 0:

Pm
l (α) =

(
1− α2

)m
2 dmPl(α)

dαm
(A.11)

and for m < 0 we have a solution in terms of the m ≥ 0 solutions:

P−m
l (α) = (−1)m

[
(l −m)!
(l +m)!

]
Pm

l (α) (A.12)

It is worth noting at this point that this only gives a non-zero solution when
m is in the range −l ≤ m ≤ l. The reason for this is that the (l+1)th derivative
of Pl(α) is zero, as its highest order term is αl (c = 0) or αl−1 (c = 1).

Glossary

A brief description of many of the terms that are italicised in the main text.

angular momentum quantum number the quantum number related to the
total angular momentum of the electron about the nucleus

black-body radiation the electro-magnetic radiation from a hot body which
absorbs all incoming light

Bohr atom the model of the atom suggested by Bohr; wherein electrons orbit
a central nucleus much like the planets about the sun

complex conjugate the term by which a complex number can be multiplied
in order to get a product which is both real and has the square of the
initial modulus

complex numbers numbers which have imaginary components; those of the
form z = a+ ib where a and b are real numbers, and i =

√
−1

Compton scattering the decrease in energy of an X-ray when it interacts
with matter
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de Broglie wavelength the wavelength of a particle of momentum p is said
to have de Broglie wavelength λ = h/p where h is Planck’s constant

eigenfunctions see section 2.2.4

eigenstates see section 2.2.4

eigenvalues see section 2.2.4

electro-magnetic radiation radiation that travels through space, having the
form of a coupled magnetic and electric disturbance; examples include
visible light, X-rays, microwaves, . . .

electron-volts a unit of energy; the amount of energy required to accelerate
an electron through a potential of 1 volt

Heisenberg uncertainty principle a particles position and momentum can-
not both be known to arbitrary precision simultaneously

ionisation energy the lowest amount of energy that has to be given to an
atom in its lowest energy state in order to allow the escape of an electron

(associated) Legendre equation partial differential equations related to spher-
ical harmonics, see appendix A

(associated) Legendre solutions solutions to the (associated) Legendre equa-
tion, see appendix A

Laplacian operator the partial differential operator ∇2

Lyman series the series of emission lines caused by an electron in a hydrogen
atom moving from a quantum state with n > 1 to the quantum state with
n = 1

magnetic quantum number the coordinate-specific quantum number related
to the component of the electrons angular momentum about the z axis

matrix mechanical formulation a definition of quantum mechanics which
utilises matrices for the storage of the properties of the components of a
system; this was introduced by Werner Heisenberg

neutrinos chargeless, extremely low mass, fundamental particles created dur-
ing some types of radioactive decay

operators see section 2.2.4

permittivity of free space the ability of free space to transmit an electric
field; a fundamental constant

photoelectric effect the effect wherein electrons are ejected from matter un-
der a particular wavelength of light; giving evidence for wave-particle du-
ality
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photon the quantum of electro-magnetic radiation; a particle of light

Planck’s constant the constant h that relates the energy and frequency of
electro-magnetic radiation in the equation E = hf ; it has value h ≈
6.626 m2 kg s−1

principal quantum number the quantum number in hydrogen related to the
atoms total energy

quantum (plural: quanta) the smallest piece of energy of a particular form:
for example a photon is the quantum of electro-magnetic radiation

quantum mechanics a theory describing the motion and state of very small
particles; such as those on the atomic and sub-atomic scales

quantum numbers the numbers describing the state of a quantum system

recurrence relation the equation defining a recursive sequence, that is, a se-
quence for which later terms depend on previous terms

reduced mass an adjusted mass µ which allows physicists to treat one of the
masses in a system of two masses m1 and m2 as stationary, by setting its
mass to ∞; given by µ = m1m2

m1+m2

relativity a catch-all term for Einstein’s theories of general relativity and spe-
cial relativity

Schrödinger’s equation a partial differential equation which governs the evo-
lution of a wavefunction in time and space

separation constant the constant both sides of a differential equation are set
to once the equation has undergone separation of variables

separation of variables a method used to solve partial differential equations
by reducing them to ordinary differential equations (see section 3)

speed of light literally the speed at which light travels through empty space:
a value around 3× 108 m s−1

sub-atomic entities which are smaller than the size of an atom; electrons,
protons, neutrons, neutrinos and so on

superposition the process by which a new solution to a linear differential
equation may be obtained by adding together two other solutions to the
equation with arbitrary constant coefficients

TISE time independent Schrödinger equation; the equation describing the wave-
function a particle in a static potential (that is, a potential with no de-
pendence on time)

wave mechanical formulation a definition of quantum mechanics which uses
the theory of waves to describe the properties of the components of a
system; this was introduced by Erwin Schrödinger

wavefunction a function used in quantum mechanics to store all of the infor-
mation about a system’s state
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